ADC internal peripheral

来自百问网嵌入式Linux wiki

Article purpose

The purpose of this article is to

  • briefly introduce the ADC peripheral and its main features
  • indicate the level of security supported by this hardware block
  • explain how each instance can be allocated to the three runtime contexts and linked to the corresponding software components
  • explain how to configure the ADC peripheral.

Peripheral overview

The STM32 ADC is a successive approximation analog-to-digital converter.

Features

The STM32MP15 has one ADC block with two physical ADCs:

  • Configurable resolution: 8, 10, 12, 14, 16 bits.
  • Each ADC has up to 20 multiplexed channels (including 6 internal channels connected only to ADC2).
  • The conversions can be performed in single, continuous, scan or discontinuous mode.
  • The result can be read in a left- or right-aligned 32-bit data register by using CPU or DMA[1].
  • The analog watchdog feature allows the application to detect if the input voltage goes beyond the user-defined, high or low thresholds.
  • A common input clock for the two ADCs, which can be selected between 2 different clock[2] sources (Synchronous or Asynchronous clock).
  • The common reference voltage can be provided by either VREFBUF[3] or any other external regulator[4] wired to VREF+ pin.

Each ADC supports two contexts to manage conversions:

  • Regular conversions can be done in sequence, running in background
  • Injected conversions have higher priority, and so have the ability to interrupt the regular sequence (either triggered in SW or HW). The regular sequence is resumed, in case it has been interrupted.
  • Each context has its own configurable sequence and trigger: software, TIM[5], LPTIM[6] and EXTI[7].

Refer to STM32MP15 reference manuals for the complete features list, and to the software components, introduced below, to know which features are really implemented.

Security support

The ADC is a non-secure peripheral.

Peripheral usage and associated software

Boot time

The ADC is usually not used at boot time. But it may be used by the SSBL (see Boot chain overview), to check for power supplies for example.

Runtime

Overview

The ADC can be allocated to:

  • the Arm® Cortex®-A7 non-secure core to be used under Linux® with IIO framework.

or

  • the Arm® Cortex®-M4 to be used with STM32Cube MPU Package with ADC HAL driver.

The Peripheral assignment chapter describes which peripheral instance can be assigned to which context.

Software frameworks

Domain Peripheral Software frameworks Comment
Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Analog ADC IIO framework STM32Cube ADC driver

Peripheral configuration

The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration by itself can be performed via the STM32CubeMX tool for all internal peripherals. It can then be manually completed (especially for external peripherals) according to the information given in the corresponding software framework article.

For the Linux kernel configuration, please refer to ADC device tree configuration and ADC Linux driver articles.

Peripheral assignment

Internal peripherals assignment table template

| rowspan="1" | Analog
| rowspan="1" | ADC
| ADC
| 
| 
| 
| Assignment (single choice)
|-
|}

How to go further

See application notes:

  • How to get the best ADC accuracy in STM32[8].
  • Getting started with STM32MP15 Series hardware development (AN5031)[9].
    It deals with analog domain power supply and reference voltage.

References


<securetransclude src="ProtectedTemplate:ArticleBasedOnModel" params="Internal peripheral article model"></securetransclude> <securetransclude src="ProtectedTemplate:PublicationRequestId" params="8309 | 2018-08-07 | AlainF"></securetransclude>

<securetransclude src="ProtectedTemplate:ReviewsComments" params="JCT 1840: alignment needed with the last version of the model<br>"></securetransclude>{{#set:Has reviews comments=true}}