第017课 LCD编程

来自百问网嵌入式Linux wiki
Baiwen root讨论 | 贡献2018年1月17日 (三) 17:34的版本

第001节_LCD硬件原理

先简单介绍下LCD的操作原理。 如下图的LCD示意图,里面的每个点就是一个像素点。 Chapter17 lesson1 001.jpg 想象有一个电子枪,一边移动,一边发出各种颜色的光。这里有很多细节问题,我们一个一个的梳理。 1. 电子枪是如何移动的? 答:有一条CLK时钟线与LCD相连,每发出一次CLK(高低电平),电子枪就移动一个像素。

2. 颜色如何确定? 答:由连接LCD的三组线:R(Red)、G(Green)、B(Blue)确定。

3. 电子枪如何得知应跳到下一行? 答:有一条HSYNC信号线与LCD相连,每发出一次脉冲(高低电平),电子枪就跳到下一行。

4. 电子枪如何得知应跳到原点? 答:有一条VSYNC信号线与LCD相连,每发出一次脉冲(高低电平),电子枪就跳到原点。

5. RGB线上的数据从何而来? 答:内存里面划分一块显存(FrameBuffer),里面存放了要显示的数据,LCD控制器从里面将数据读出来,通过RGB三组线传给电子枪,电子枪再依次打到显示屏上。

6. 前面的信号由谁发给LCD? 答:有S3C2440里面的LCD控制器来控制发出信号。

通过JZ2440原理图对上面进行验证,下图的LCD控制器接口图。 Chapter17 lesson1 002.jpg ①是时钟信号,每来一个CLK,电子枪就移动一个像素; ②是用来传输颜色数据; ③是垂直方向同步信号,FRAME(帧); ④是水平方向同步信号,LINE(行);

再来看看LCD的芯片手册。 Chapter17 lesson1 003.jpg 先是VLED+、VLED-背光灯电源。VDD、VDD是LCD电源。 R0-R7、G0-G7、B0-B7是红绿蓝颜色信号。 PCLK是像素时钟信号。DISP是像素开关。 HSYNC、VSYNC分别是水平方向、垂直方向信号。 DE数据使能。X1、Y1、X2、Y2是触摸屏信号。

可以看出LCD有很多信号,这些信号要根据时序图传输才能正确显示。参考JZ2440_4.3寸LCD手册_AT043TN24的时序如下: Chapter17 lesson1 004.png 从最小的像素开始分析,电子枪每次在CLK下降沿(本开发板是下降沿)从数据线Dn0-Dn7上得到数据,发射到显示屏上,然后移动到下一个位置。Dn0-Dn7上的数据来源就是前面介绍的FrameBuffer。就这样从一行的最左边,一直移动到一行的最右边,完成了一行的显示,假设为x。 当打完一行的最后一个数据后,就会收到Hsync行同步信号,根据时序图,一个Hsync周期可以大致分为五部分组成:thp、thb、1/tc、thd、thf。thp称为脉冲宽度,这个时间不能太短,太短电子枪可能识别不到。电子枪正确识别到thp后,会从最右端移动最左端,这个移动的时间就是thb,称之为移动时间。thf表示显示完最右像素,再过多久Hsync才来。 同理,当电子枪一行一行的从上面移动到最下面时,Vsync垂直同步信号就让电子枪移动回最上边。Vsync中的tvp是脉冲宽度,tvb是移动时间,tvf表示显示完最下一行像素,再过多久Vsync才来。 假设一共有y行,则LCD的分辨率就是x*y。 关于显示原理,可以参考这篇博客:http://www.cnblogs.com/shangdawei/p/4760933.html 里面有一个LCD显示配置示意图如下: Chapter17 lesson1 005.jpg 当发出一个HSYNC信号后,电子枪就会从最右边花费HBP时长移动到最左边,等到了最右边后,等待HFP时长HSYNC信号才回来。因此,HBP和HFP分别决定了左边和右边的黑框。 同理,当发出一个VSYNC信号后,电子枪就会从最下边花费VBP时长移动到最上边,等到了最下边后,等待VFP时长VSYNC信号才回来。因此,VBP和VFP分别决定了上边和下边的黑框。 中间灰色区域才是有效显示区域。

再来解决最后一个问题:每个像素再FrameBuffer中,占据多少位BPP(Bits Per Pixels)? 前面的LCD引脚功能图里,R0-R7、G0-G7、B0-B7,每个像素是占据3*8=24位的,即硬件上LCD的BPP是确定的。 虽然LCD上的引脚是固定的,但我们使用的时候,可以根据实际情况进行取舍,比如我们的JZ2440使用的是16BPP,因此LCD只需要R0-R4、G0-G5、B0-B4与SOC相连,5+6+6=16BPP,每个像素就只占据16位数据。

我们写程序的思路如下: 1. 查看LCD芯片手册,查看相关的时间参数、分辨率、引脚极性; 2. 根据以上信息设置LCD控制器寄存器,让其发出正确信号; 3. 在内存里面分配一个FrameBuffer,在里面用若干位表示一个像素,再把首地址告诉LCD控制器;

之后LCD控制器就能周而复始取出FrameBuffer里面的像素数据,配合其它控制信号,发送给电子枪,电子枪再让在LCD上显示出来。以后我们想显示图像,只需要编写程序向FrameBuffer填入相应数据即可,硬件会自动的完成显示操作。

第002节_S3C2440_LCD控制器

LCD控制器主要功能和需要的设置: 1. 取:从内存(FrameBuffer)取出某个像素的数据;之后需要把FrameBuffer地址、BPP、分辨率告诉LCD控制器; 2. 发:配合其它信号把FrameBuffer数据发给LCD;需要设置LCD控制器时序、设置引脚极性;

这里主要的难点就是如何配合其它信号,需要我们阅读LCD芯片手册,知道其时序要求,然后设置相应的LCD控制器。

先看下S3C2440芯片手册上的LCD控制器框图: Chapter17 lesson2 001.png 通过设置REGBANK(寄存器组),LCDCDMA会自动(无需CPU参与)把内存上FrameBuffer里的数据,通过VIDPRCS发送到引脚VD[23:0]上,再配合VIDEOMUX引脚的控制信号,正确的显示出来。

S3C2440芯片手册介绍了LCD控制器支持TFT和STN两种LCD,我们常用的都是TFT材质的,因此主要看TFT相关的部分。

调色板的概念: 画油画的时候,通常先在调色板里配好想要的颜色,再用画笔沾到画布上作画。LCD控制器里也借用了这个概念,从FrameBuffer获得数据,这个数据作为索引从调色板获得对应数据,再发给电子枪显示出来。 Chapter17 lesson2 002.jpg 如图,假如是16BPP的数据,LCD控制器从FB取出16bit数据,显示到LCD上。 当如果想节约内存,对颜色要求也没那么高,就可以采用调色板的方式,调色板里存放了256个16bit的数据,FB只存放每个像素的索引,根据索引去调色板找到对应的数据传给LCD控制器,再通过电子枪显示出来。

假设现在想要LCD只显示一种颜色怎么办? 如果是16BPP/24BPP需要修改FB里面的数据,填充同一个值。 如果是8BPP可以修改FB为同一种颜色,也可以设置调色板为同一种颜色,对于S3C22440有个临时调色板的特性,一旦使能了临时调色板,不管FB里面是什么数据,都只调用临时调色板的数据。

第003节_编程_框架与准备

本节主要有两个目的: a. 讲解后续程序的框架; b. 准备一个支持NAND、NOR启动的程序;

我们的目的是在LCD显示屏上画线、画圆(geomentry.c)和写字(font.c)其核心是画点(farmebuffer.c),这些都属于纯软件。此外还需要一个lcd_test.c测试程序提供操作菜单,调用画线、画圆和写字操作。 往下操作的是LCD相关的内容,不同的LCD,其配置的参数也会不一样,通过lcd_3.5.c或lcd_4.3.c来设置。 根据LCD的特性,来设置LCD控制器,对于我们开发板,就是s3c2440_lcd_controller.c,假如希望在其它开发板上也实现LCD显示,只需添加相应的代码文件即可。 这就是LCD编程的框架,尽可能的“高内聚低耦合”。 Chapter17 lesson3 001.jpg


为了让程序更加好扩展,下面介绍“面向对象编程”的概念。 假如我们写好程序后,有两款尺寸大小的lcd,如何快速的在两个lcd上切换? 首先我们抽象出lcd_3.5.c和lcd_4.3.c的共同点,比如都有初始化函数init(),我们可以新建一个lcd.c,然后定义一个结构体:

struct lcd_opr{
    void (*init)(void);
};

用户不接触lcd_3.5.c和lcd_4.3.c,只需要在lcd.c里通过指针访问对应的结构体的函数,也就调用了不同init()。 Chapter17 lesson3 002.jpg

前面我们的程序大小都没超过4K,因此无论Nor/Nand启动,都是正常的,现在的LCD相关代码比较大,超过4K,因此需要修改启动部分的代码。 目前还未讲解nand flash,因此直接将19课准备的nand_flash程序部分复制到当前代码里即可,关于这部分可以参考nand flash讲解部分。