“USBPHYC device tree configuration”的版本间的差异
Zhouyuebiao(讨论 | 贡献) |
|||
第1行: | 第1行: | ||
== Article purpose == | == Article purpose == | ||
− | + | 本文介绍了将[[USBPHYC internal peripheral|'''USBPHYC''' internal peripheral]] 分配给 Linux<sup>®</sup> 时如何配置。 在这种情况下,它由[[PHY_overview|PHY framework]]控制。 | |
− | + | 使用 [[Device tree|device tree]]机制执行配置。 | |
− | + | “USBPHYC Linux驱动程序”<ref>{{CodeSource | Linux kernel | drivers/phy/st/phy-stm32-usbphyc.c}}, STM32 USB PHY Controller driver</ref> 它将相关信息注册在 [[PHY_overview|PHY framework]]中。 | |
== DT bindings documentation == | == DT bindings documentation == |
2020年11月11日 (三) 09:15的版本
目录
Article purpose
本文介绍了将USBPHYC internal peripheral 分配给 Linux® 时如何配置。 在这种情况下,它由PHY framework控制。
使用 device tree机制执行配置。
“USBPHYC Linux驱动程序”[1] 它将相关信息注册在 PHY framework中。
DT bindings documentation
USBPHYC device tree bindings[2] describe all the required and optional functions.
USBPHYC |_ PLL | |_ PHY port#1 _________________ HOST controller | _ | | / 1|________________| |_ PHY port#2 ----| |________________ | \_0| | |_ UTMI switch_______| OTG controller
DT configuration
This hardware description is a combination of the STM32 microprocessor device tree files (.dtsi extension) and board device tree files (.dts extension). See the Device tree for an explanation of the device tree file split.
STM32CubeMX can be used to generate the board device tree. Refer to How to configure the DT using STM32CubeMX for more details.
DT configuration (STM32 level)
The USBPHYC node is declared in stm32mp157c.dtsi[3].
- root node e.g. usbphyc describes the USBPHYC hardware block parameters such as registers, clocks, resets and supplies.
- child nodes e.g. usbphyc_port0 and usbphyc_port1 describe the two high speed PHY ports: port#1 and port#2.
usbphyc: usbphyc@address { compatible = "st,stm32mp1-usbphyc"; ... /* usbphyc resources: registers, clocks, resets and supplies */ usbphyc_port0: usb-phy@0 { ... /* usbphyc HS PHY port#1 */ }; usbphyc_port1: usb-phy@1 { ... /* usbphyc HS PHY port#2 */ }; };
This device tree part is related to STM32 microprocessors. It must be kept as is, without being modified by the end-user. |
DT configuration (board level)
Follow the sequences described in the below chapters to configure and enable the USBPHYC on your board.
The 'usbphyc' root node must be filled in:
- Enable the USBPHYC block by setting status = "okay".
- Configure the USBPHYC 3V3 regulator[4] by setting vdd3v3-supply = <&your_regulator>.
USB HS PHY ports require an external 3V3 power supply to be provided at VDD3V3_USBHS pin. |
The child nodes for each port may be tuned:
- Optional: create a usb_phy_tuning node that can take optional parameters in DT root folder ('/')
- Optional: add 'st,phy-tuning = <&usb_phy_tuning>' in 'usbphyc_port0' and/or 'usbphyc_port1' node to use this tuning.
It may be necessary to adjust the phy settings to compensate parasitics, which can be due to USB connector/receptacle, routing, ESD protection component.
Optional tuning parameter list is available in USBPHYC device tree bindings[2]. |
<securetransclude src="ProtectedTemplate:ReviewsComments" params="FGA W902: Later add reference link to the application note that explains how to tune these parameters (once published)"></securetransclude>{{#set:Has reviews comments=true}}
DT configuration example
The example below shows how to enable and configure USBPHYC ports in the board file
&usbphyc { vdd3v3-supply = <&vdd_usb>; /* references the 3V3 voltage regulator on the user board */ status = "okay"; /* enable USB HS PHY controller */ }; &usbphyc_port0 { st,phy-tuning = <&usb_phy_tuning>; /* Optional USB HS PHY port#1 tuning */ }; &usbphyc_port1 { st,phy-tuning = <&usb_phy_tuning>; /* Optional USB HS PHY port#2 tuning */ };
/ { /* Optional USB HS PHY tuning example, to be added in DT root node, e.g. '/' */
usb_phy_tuning: usb-phy-tuning {
st,current-boost = <2>;
st,no-lfs-fb-cap;
st,hs-dc-level = <2>;
st,hs-rftime-reduction;
st,hs-current-trim = <5>;
st,hs-impedance-trim = <0>;
st,squelch-level = <1>;
st,no-hs-ftime-ctrl;
st,hs-tx-staggering;
};
};
Static configuration of the UTMI switch to assign the port#2 to either USBH or OTG is done by the PHY user node[5]:
usbphyc_port1 user must configure an additional specifier for UTMI switch: 0 to select OTG, 1 to select USBH |
Abstract of the example to configure port#2, to be assigned to the USBH:
&usbh_ehci { phys = <&usbphyc_port0>, <&usbphyc_port1 1>; /* 1: UTMI switch selects the USBH */ phy-names = "usb", "usb"; ... }
Abstract of the example to configure port#2, to be assigned to the OTG:
&usbotg_hs { phys = <&usbphyc_port1 0>; /* 0: UTMI switch selects the OTG */ phy-names = "usb2-phy"; ... }
How to configure the DT using STM32CubeMX
The STM32CubeMX tool can be used to configure the STM32MPU device and get the corresponding platform configuration device tree files.
The STM32CubeMX may not support all the properties described in the above DT bindings documentation paragraph. If so, the tool inserts user sections in the generated device tree. These sections can then be edited to add some properties and they are preserved from one generation to another. Refer to STM32CubeMX user manual for further information.
References
Please refer to the following links for additional information:
- ↑ drivers/phy/st/phy-stm32-usbphyc.c| |}} drivers/phy/st/phy-stm32-usbphyc.c , STM32 USB PHY Controller driver
- ↑ 2.02.1 Documentation/devicetree/bindings/phy/phy-stm32-usbphyc.txt| |}} Documentation/devicetree/bindings/phy/phy-stm32-usbphyc.txt , USBPHYC device tree bindings
- ↑ arch/arm/boot/dts/stm32mp157c.dtsi| |}} arch/arm/boot/dts/stm32mp157c.dtsi , STM32MP157C device tree file
- ↑ Regulator overview
- ↑ Documentation/devicetree/bindings/phy/phy-bindings.txt| |}} Documentation/devicetree/bindings/phy/phy-bindings.txt ,PHY generic bindings
<securetransclude src="ProtectedTemplate:PublicationRequestId" params="10329 | 2019-01-15 | AlainF"></securetransclude> <securetransclude src="ProtectedTemplate:ArticleBasedOnModel" params="Peripheral or framework device tree configuration model"></securetransclude>